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ABSTRACT

This letter report describes the surrogate models developed from the EnergyPlus model of Oak Ridge 
National Laboratory’s Flexible Research Platform. Two data-driven black-box models were developed, 
and the outputs of the surrogate models were compared with the EnergyPlus model. The two models 
developed are a multilayer perceptron deep learning model, and a long short-term memory (LSTM) 
neural network model. The three factors for selecting the black-box models are scalability, computation 
time, and accuracy. A total of 107 input variables were the dominant variables in determining the outputs 
of building energy consumptions and thermal comfort. A total of 54 output variables were identified as 
the prediction targets, including the system- and zone-level outputs. 

The large set of the simulation cases were generated by integrating sensor errors into an emulator based 
on EnergyPlus and Python EMS, which includes advanced control sequences from ASHRAE Guideline 
36-2018: High-Performance Sequences of Operation. The surrogate models were developed based on a set 
of large-scale simulation runs (i.e., 4,000 runs) on a cloud platform. The comparison analysis shows that 
the two black-box models had good accuracy for predicting new outputs for sensitivity analysis using the 
root mean square error metric.

As a next step, the developed surrogate models will be used to perform sensitivity analysis for different 
sensor impacts (e.g., sensor types, sensor locations). 

1. INTRODUCTION

The Sensor Impact Evaluation and Verification project is a 3-year, 3-laboratory collaborative project. The 
overarching project goal is to develop a framework that allows quantitative evaluation of the impact of 
sensors on building HVAC control, fault detection and diagnostics, and consequently, building energy 
efficiency and occupant thermal comfort. To achieve the goal in FY 2021, the Oak Ridge National 
Laboratory team identified variables of interest and developed an emulator that is a custom module using 
Python and the Flexible Research Platform (FRP) EnergyPlus Python plugin coupled with heuristic 
controllers for one use case, which is room temperature control. The developed emulator enables 
evaluating the sensor impact with various parameters related to building HVAC systems, control, and 
sensors. However, to quantitatively assess the effect of parameters on building performance, uncertainty 
and sensitivity analysis needs to be performed. This analysis requires an extensive number of simulations, 
making the use of the developed emulators for this purpose difficult. To enable this analysis, the team 
developed surrogate models, and this report presents the method to develop the surrogate models from the 
EnergyPlus model of Oak Ridge National Laboratory’s FRP, and its results.

2. CLOUD COMPUTING

2.1 SENSORS

Based on extensive literature reviews, 34 sensors were identified. They are typical sensors to operate 
rooftop unit (RTU) and variable air volume (VAV) systems in small to medium office buildings. The 
sensors were prioritized based on indoor air dry-bulb temperature, which potentially affects energy 
efficiency and occupant thermal comfort significantly.

The identified sensors are frequently found in commercial buildings. They are listed in Table 1.
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Table 1. Comprehensive sensor list.

Location Measurement Priority Location Measurement Priority
Room Temperature 1 RTU OA CO2 4
Room Humidity 3 RTU OA flow rate 3
Room CO2 4 RTU SA temperature 1
Room Lighting condition 5 RTU SA humidity 3
Room Occupancy 5 RTU SA CO2 4

VAV box SA temperature 1 RTU SA flow rate 3
VAV box SA humidity 3 RTU RA temperature 2
VAV box SA flow rate 1 RTU RA humidity 3
Main duct Static pressure 2 RTU RA CO2 4

Exhaust fan EA temperature 4 RTU RA flow rate 3
Exhaust fan EA humidity 4 RTU MA temperature 2
Exhaust fan EA flow rate 4 RTU MA humidity 3
Exhaust fan EA CO2 4 RTU MA CO2 4

Other Plug load 5 RTU MA flow rate 3
Other Lighting load 5 RTU Refrigerant temperature 5
RTU OA temperature 1 RTU Refrigerant pressure 5
RTU OA humidity 3 RTU Refrigerant flow rate 5

SA = supply air; EA = exhaust air; OA = outdoor air; RA = return air; MA = mixing air

Based on the FRP building and HVAC system, five sensor types were selected for the following reasons: 
the zone air temperature is the most important variable to control to meet the set points; the zone air 
temperature is directly impacted by the VAV box supply air (SA) temperature and SA flow rate from the 
control perspective; and RTU system-level operation also directly impacts the VAV operations; RTU 
outdoor air (OA) temperature and supply air temperature are significant in determining the system-level 
energy consumption. The sensor types are listed in Table 2. 

Table 2. Selected sensor list.

Location Measurement Priority
Room Temperature 1

VAV box SA temperature 1
VAV box SA flow rate 1

RTU OA temperature 1
RTU SA temperature 1

2.2 SENSORS ERRORS (INPUTS)

The sensor error comprises two components: bias error and precision error. Figure 1 (right) shows the 
demonstration of bias error and precision error. For a sensor, there is an ideal reading (or true reading) at 
a time step, as shown in the black line of Figure 1. The bias error is the bias of average sensor readings 
from the ideal readings, as shown in green dotted line of Figure 1. It is a system error. The precision error 
is the random bias from the average sensor readings, as shown in the blue lines of Figure 1. 
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Figure 1. Sensor Error Diagram (note: PDF means probability density function)

Both the bias error and precision error follow normal distributions, as shown in Figure 1 (left).

Equations (1)–(3) describe the sensor errors:

𝐸𝑟𝑟𝑏𝑖𝑎𝑠 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(0, 𝜎𝑏𝑖𝑎𝑠) , (1)

𝐸𝑟𝑟𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(0, 𝜎𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) , (2)

𝑆𝑒𝑛𝑠𝑜𝑟𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 = 𝑆𝑒𝑛𝑠𝑜𝑟𝑖𝑑𝑒𝑎𝑙𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 + 𝐸𝑟𝑟𝑏𝑖𝑎𝑠 + 𝐸𝑟𝑟𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , (3)

where

𝜎𝑏𝑖𝑎𝑠 is the standard deviation of bias error, and 𝜎𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the standard deviation of precision.

The sensor errors were injected based on the principles of above given equations.

2.3 LARGE-SCALE SIMULATION

The large-scale simulation was based on a commercial cloud platform, Microsoft Azure. A total of 4,000 
cases were simulated on the cloud. The inputs were the sensor errors injected for the five selected sensors 
for the FRP building emulator, as shown in Table 3. Because of EnergyPlus internal programming limits, 
injecting larger sensor errors leads to simulation crash. The sensor error standard deviations were based 
on multiple trials. The thresholds were based on engineering experience and domain knowledge, and also 
on actual RTU- and zone-level sensor ideal readings. The outputs were the target variables for energy 
consumption and thermal comfort, such as fan electricity consumption and VAV box reheat coil energy. 
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Table 3. Selected sensor error standard deviation.

Location Measurement Bias Precision Note
Room Temperature 1 0.1 °C

VAV box SA temperature 1 0.1 °C
VAV box SA flow rate 0.001 0.0001 m3/s

RTU OA temperature 1 0.1 °C
RTU SA temperature 1 0.1 °C

The basic diagram is shown in Figure 2. The basic workflow is as follows: 

1. A Python script is developed to generate 4,000 simulation input files (IDF files). Each IDF file is 
associated a Python class of sensor errors through Python EMS. During the simulation, at each time 
step, a new sensor error (including bias and precision) is injected to the ideal sensor readings from 
EnergyPlus.

2. After 4,000 cases are generated, they are uploaded to the Azure cloud platform. 
3. In the Azure cloud platform, a bash script selects the appropriate virtual machine configurations (e.g., 

memory, hard drive, as shown in Table 4) and number of virtual machines. The team’s subscription 
includes 300 nodes (virtual machines). 

4. The Azure cloud provides a job scheduler, which automatically distributes all 4,000 cases through 
300 nodes. 

5. The simulation marches automatically until all cases are accomplished. 
6. Finally, all the results are downloaded to set up the data sets (inputs and outputs) to create the black-

box models. 

Figure 2. Large-scale simulation information flow.

The configuration for the cloud is shown in Table 4.
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Table 4. Cloud configurations.

Machine type CPUs/cores Memory Storage/ 
SSD

Total 
nodes

Time 
executed

Standard_D16d_v4 16 64 GB 600 GB 300 9 h

The diagram for each case is shown in Figure 3. The sensor list was preselected based on previous 
studies. The sensor errors were sampled through normal distribution for each time step. The sensor 
readings from EnergyPlus used the sensor errors to form a hacked sensor readings. The hacked sensor 
readings were used as inputs to control sequences to calculate new set points. These new set points were 
used to control the performance of buildings. Ultimately, the energy consumption and thermal comfort 
were different from using the ideal sensor readings. 

Figure 3. FRP EnergyPlus emulator.

3. SURROGATE MODELS

3.1 INPUTS AND OUTPUTS

The purpose of the surrogate model was to establish the mapping relationship between input and output 
variables. The input variables were based on the FRP EnergyPlus models. A detailed list of variables is 
provided in Table 5. 
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Table 5. Input variables.

Variable name Quantity
OAT 1

OAT relative humidity 1
OA pressure 1
Wind speed 1

Wind direction 1
Horizontal infrared radiation rate 1

Diffuse solar radiation rate 1
Direct solar radiation rate 1

Lighting energy 1
Internal heat gains: equipment 1

People Activity 1
SensorBias: AHU OAT 1

SensorPrecision: AHU OAT 1
SensorTotalError: AHU OAT 1

SensorBias: AHU SAT 1
SensorPrecision: AHU SAT 1
SensorTotalError: AHU SAT 1
SensorBias: zone VAV SAF 10

SensorPrecision: zone VAV SAF 10
SensorTotalError: zone VAV SAF 10

SensorBias: zone VAV SAT 10
SensorPrecision: zone VAV SAT 10
SensorTotalError: zone VAV SAT 10
SensorBias: zone air temperature 10

SensorPrecision: zone air temperature 10
SensorTotalError: zone air temperature 10

Total 107
(Note: OAT = outdoor air temperature, SAT=supply air temperature, SAF=supply air flow rate)

Similarly, the output variables were also based on FRP EnergyPlus models. A detailed list of output 
variables is provided in Table 6. 
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Table 6. Output variables.

Variable name Quantity Note
Fan electricity rate 1

Main cooling coil sensible cooling rate 1
Main cooling coil electricity rate 1

Main heating coil heating rate 1
Zone air sensible heating rate 10
Zone air sensible cooling rate 10

Zone air temperature 10
Zone predicted percentage dissatisfied 10

VAV box reheat energy 10
RTU cooling temperature set point 1 Optional
RTU heating temperature set point 1 Optional

VAV box supply airflow rate set point 10 Optional
Total 66

3.2 TRAINING AND TESTING

The whole data set was divided into a training data set (80% of total) and a validation data set (20% of 
total). The training data set was used to learn the weights of input variables to output variables. The 
validation data set was used to test the accuracy of the surrogate model prediction from the emulator 
output variables. The dataset were all shuffled to avoid the input data internal impacts. The root mean 
squared error (RMSE) is used to quantify the modeling accuracy, which is given as below:

𝑅𝑀𝑆𝐸 = ∑𝑁
1 (𝑦𝑖 ― 𝑦𝑖)2

𝑁
 , (4)

where 𝑅𝑀𝑆𝐸 is the root mean square error, 𝑦𝑖 is the emulator output variable, 𝑦𝑖 is the surrogate model 
output variable, and 𝑁 is the total number of variables in prediction. 

3.3 MULTILAYER PERCEPTRON MODEL

3.3.1 Principle

The multilayer perceptron (MLP) functioned as a black-box model for regression with the desired input 
and output variables, as shown in Figure 4. The structure diagram is shown in Figure 5. For black-box 
models, the purpose is to find the mapping relationship between inputs and outputs. The MLP model is a 
technique to find such mappings (or “weights”) or each input variables using a gradient descent method. 
It has input layers (with all input variables), hidden layers, and output layers (with all output variables). 
The gradient descent method is a mature mathematical method widely used in machine learning. The 
details are not discussed here. 
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Figure 4. MLP principle.

Figure 5. MLP structure.

In Figure 5, the input variables (x1, x2, x3) and output variables (e.g. y1, y2) are associated together, to 
learn the weights (coefficients) based on large training dataset. The hidden layer (e.g. h1, h2, h3, h4) acts 
as intermediate variables.

3.3.2 Results

The results for the MLP model are shown in Figure 6 (RTU system-level energy consumptions) and 
Figure 7 (zone-level energy consumptions and thermal comfort). The RMSE metric was used to quantify 
the model accuracy. 
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Figure 6. RTU system-level energy outputs (MLP). Top left: fan electricity consumption; top right: cooling 

system electricity consumption; bottom left: cooling system cooling energy; bottom right: heating system heating 
energy.
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Figure 7. Zone-level energy outputs (zone 102). Top: zone sensible heating energy; 2nd row left: zone VAV box 

reheat coil energy; 2nd row right: zone cooling energy; 3rd row left: zone predicted percentage dissatisfied; 
3rd row right: zone temperature.

Figure 6 demonstrates the RTU system-level energy items based on the MLP model. The energy items are 
fan electricity consumption, cooling system electricity consumption, cooling system cooling energy, and 
heating system heating energy. The RMSE metric shows that they had good agreement for training and 
testing of the simulation data set. 
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Figure 7 demonstrates the zone-level energy items based on the MLP model. The energy items are zone 
sensible heating energy, zone VAV box reheat coil heating energy, zone sensible cooling energy, zone 
predicted percentage dissatisfied, and zone temperature. The RMSE metric shows that a good agreement 
for the MLP models. 

3.4 LONG SHORT-TERM MEMORY MODEL

3.4.1 Principle

Similar to the MLP model, the long short-term memory (LSTM) model is a neural network model 
suitable for time-series forecasting. For building energy simulations, the results are time-series variables. 
The thermal state of buildings at previous time steps has certain impacts on the later time steps. With 
LSTM, the main purpose is to find the mapping of inputs and outputs (Figure 8). Figure 9 shows that the 
input variables were transformed into multiple routes as a way of including previous states’ impacts. The 
detailed mathematics are not included here because the goal was to use LSTM to make a black-box 
model.

Figure 8. LSTM principle.
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Figure 9. LSTM cell structure.

Similarly, the LSTM model was used as a black-box for regression, which is shown in Figure 8. The 
detailed structure of the LSTM model is shown in Figure 9. The LSTM structure has many variations, and 
only the common one was used. The mathematical principles are not included here, because it is only 
used as a tool for data-driven purpose.

3.4.2 Results

The results for the LSTM model are shown in Figure 10 (RTU system-level energy consumptions) and 
Figure 11 (zone-level energy consumptions and thermal comfort). The RMSE metric was used to quantify 
the model accuracy. 
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Figure 10. RTU system-level energy outputs. Top left: fan electricity consumption; top right: cooling system 

electricity consumption; bottom left: cooling system cooling energy; bottom right: heating system heating energy.
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Figure 11. Zone-level energy outputs. Top: zone sensible heating energy; 2nd row left: zone VAV box reheat coil 

energy; 2nd row right: zone cooling energy; 3rd row left: zone predicted percentage dissatisfied; 
3rd row right: zone temperature.

Figure 10 demonstrates the RTU system-level energy prediction based on the LSTM model. The energy 
items are fan electricity consumption, RTU cooling electricity consumption, cooling energy, and heating 
energy. The RMSE metric shows that the model was sufficient for prediction in sensitivity analysis.

Figure 11 demonstrates the zone-level energy prediction based on the LSTM model. The energy items are 
zone sensible heating energy, VAV box reheat coil energy, zone sensible cooling energy, zone predicted 
percentage dissatisfied, and zone temperature. The RMSE metric shows that the LSTM model had better 
accuracy than the MLP model.
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4. CONCLUSIONS

This milestone investigated the surrogate models for sensitivity analysis. Various steps were involved for 
the surrogate models. Typical sensors were selected for the FRP building. Sensor errors were identified 
accordingly. An emulator was established with the sensor types, sensor errors, and EnergyPlus model. 
The advanced control sequence was integrated. Large-scale simulations were conducted (4,000 simulation 
cases) on the cloud. After downloading the simulation results, 107 input variables and 54 output variables 
were selected. The mapping relationship of the variables was obtained through machine learning 
techniques. Two surrogate models were proposed: MLP and LSTM. Three factors in selecting these 
surrogate models were scalability, computation time, and accuracy. Based on the simulation data set, the 
two surrogate models were trained, and they showed good agreement with simulation results. The LSTM 
model was slightly more accurate than the MLP model. 

Next, the surrogate models will be used for sensitivity analysis. The proposed workload is to establish a 
sensitivity analysis–oriented framework using the surrogate models, perform sensitivity and uncertainty 
analysis based on 4,000 simulation cases, and perturb sensor locations—and conduct multiple sets of 
large-scale simulations—for sensitivity analysis. 

 




